地質空間モデリングにおける補助情報利用の有効性

小池 克明*・呂 磊*・久保 大樹*

Effectiveness of Use of Auxiliary Information for Geologic Spatial Modeling

Katsuaki Koike*, Lei Lu* and Taiki Kubo*

*京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2-215, Kyoto 615-8540, Japan. E-mail: koike.katsuaki.5x@kyoto-u.ac.jp

キーワード:地球統計学,共クリギング,副変数,成分濃度,岩体透水性 Key words: Geostatistics, Co-kriging, Secondary variable, Component concentration, Rock-mass permeability

1. はじめに

金属・エネルギー・水資源の需要の急増に伴い、鉱床 中の品位分布、貯留層の地質構造や物性分布の推定精度 の向上が急務の課題となっている.また,地すべりや液 状化に対する危険度評価,震度予測などの防災面,さら には地下水や地盤環境の保全・汚染防止といった地圏環 境面でも地盤物性の空間分布推定は不可欠である. ボー リング調査や岩石試料の分析などによる地質データには, 近距離のデータほど類似した値や性質を示すという空間 的相関構造が存在するので、これに基づく地球統計学が 推定に広く用いられている.しかし,推定の対象とする データ, すなわち主変数の利用のみでは, 測点の配置の 偏りやデータ量の少なさなどで妥当な空間モデルが得ら れない場合が多い. そこで, 主変数と関連する副変数を 用いて情報を補うことが行われる.本稿では空間推定の 精度向上のために、このような補助情報を利用すること の有効性について,筆者らの研究事例に基づき検証する.

2. 化学成分と物性値との組み合わせ

ボーリングによる地質情報は精度は高いが,連続的に データを得ることは困難である.これに対して,ボーリ ング検層は細かい深度間隔でデータを取得できるととも に,化学成分濃度,透水係数,空隙率など,主変数の対 象となる重要な地質物性と関連性をもつので,副変数と して利用できる.その例として,JAEA幌延研究サイトを 対象とし,10本の深層ボーリングデータと地震波探査デ ータを用いての水理地質構造解析(Lu et al.,2016)をあ げる.まず,主要地質である稚内層,声問層,勇知層, 更別層の地層境界と大曲断層の形状をスプライン補間に より推定した.断層面の形状が深部で変化すること,4 枚の地層境界面は相似形をなしていること,および断層 付近で境界面の形状が複雑になり,断層運動の影響が現 れていること,などが見出された.

当サイトでは塩水型地下水の起源が種々議論されてい るので、CI-濃度を対象に選び、東西3 km×南北4 km×深 度方向1 kmの領域での3次元分布を推定した.まず、普通 クリギング (ordinary kriging: OK)を適用し、推定分布 と声問層、稚内層、大曲断層・副次断層とを重ね合わせ た(第1図a).これから領域深部はCI-濃度が8,000~12,000 mg/Lと高いとともに、大曲断層と副次断層がCI-の高濃度 と低濃度の明確な境界を形成していることがわかる(第1 図b).これはダメージゾーンの高透水性に起因する特徴 であると考えられる.

各ボーリングでは電気検層により密に比抵抗データが 得られおり、これとCI濃度とは強い負の相関をもつ(相 関係数-0.89). これらのクロス・セミバリオグラムに関 し、その主軸は断層に沿う70°にあり、ガウスモデルで近 似でき、レンジは360mであった. そこで比抵抗データを 副変数として逐次ガウス共シミュレーション(sequential Gaussian co-simulation: SGCS) を適用し、10回のSGCSの 平均を求めた(第1図c). OKによる高濃度部と対応する 箇所が多く, 断層が主要な濃度境界を形成するという特 徴も同じである(第1図d).しかし、データ位置の偏り と疎の分布の影響がOKには強く現れ、2つの近接するデ ータの垂直二等分線に沿って同じ濃度が延長され、不自 然な線状パターンを描いている.この影響はSGCSによっ て軽減されており,濃度の変化も大きい.よって,解析 対象領域の大きさに比べて, データ数が少なく, 位置の 偏在性が強い場合にはSGCSのような確率的シミュレー ションの利用が有効であるといえる.

3. 層厚を補助情報とした金属品位モデリング

金属鉱物資源の空間モデリングの一例として, ニッケル (Ni)の品位分布解析 (Ilyas et al., 2016)をあげる. 風化残留型の一つであるラテライトNi鉱床の探査・開発

第1図 幌延サイトでの普通クリギングによる CI:濃度分布と地層境 界面,大曲断層と副次断層との重ね合わせ(a),水平・垂直断面図 とボーリングデータの分布(b),およびこれらの表示に対応する逐次 ガウス共シミュレーションによっての CI:濃度分布(c)と断面図(d)(領 域の大きさは東西 3 km×南北 4 km×深度方向 1 km)

が世界中で進められているが、Niの品位分布は複雑であ り、その正確な予測と品位分布を支配する因子の特定は いまだ困難である.解析対象は、インドネシア・スラウ ェシ島に位置する大規模なNi鉱山である.対象範囲は東 西1.6 km・南北1 kmであり、ここに294地点でボーリング が実施された.隣り合う地点の水平方向での間隔は約50 mで、ボーリングの平均長は26.62 mである.また、本地 域の地質は、地表からリモナイト、サプロライト、基盤 岩(主にハルツバージャイト)の3層に区分できる.

まず、種々の統計分析により、Ni品位が地形やサプロ ライト層の層厚と関連することを見出した.すなわち、 傾斜が緩い地形で基盤岩の風化層であるサプロライト層 が厚いほどNiの品位が高い傾向にある(第2図).そこで、 Ni品位を主変数、サプロライト層厚を副変数とした普通 共kriging (ordinary co-kriging: OCK)により、Ni品位の分 布を推定した.前述の幌延サイトよりもデータは密にあ るものの、それでもOKによる推定分布には平滑化効果が 強く現れた.これがOCKによれば軽減でき、OKではほぼ 一様であったNi品位の領域において、品位の細かい変化 が推定できるようになった.OKに対してのOCKの推定結 果の妥当性は、クロス確認によっても確かめられた.

4. 岩体透水性モデリングへの亀裂情報の利用

CCSやHLW地層処分などの地層の貯留機能利用におい て、水理地質構造の詳細な把握が不可欠となる. 岐阜県 東濃地域を対象とした広域的な水理地質構造解析,およ び亀裂分布と地下水流動系モデルの構築(久保ほか, 2013; Koike et al., 2015)は、これに対するアプローチの 例である.解析領域は東西12 km・南北8 km・深度方向 1.5 kmであり、25孔を利用した計395区間において透水試 験が実施され、透水係数データが得られている.しかし、 透水試験位置の水平方向での偏りは大きいので、領域全 体の透水係数分布を詳細に把握するのは困難である.

そこで、GEOFRACによる3次元亀裂分布モデル(Koike et al., 2015)と透水係数データとの組み合わせを試みた. すなわち、透水係数のデータ点近傍を通るシミュレーシ ョン亀裂を抽出し、亀裂面積と透水係数の値を比較した. その結果、これらに正の相関関係が見出されたため、シ ミュレートされた亀裂面に回帰式から透水係数を与える ことによって、サンプルデータを増やした.これにより、 領域全体の透水係数分布を逐次ガウスシミュレーション (sequential Gaussian simulation: SGS)によって妥当に推 定することが可能となった.得られた空間モデルは、実 測値のみを用いたSGSによるモデルよりも空間的な連続 性が向上し、値の極端なばらつきを抑えられている(第3 図).さらに、MODFLOWへの適用によって概ね長さ2 km 以上の亀裂面が主要な地下水流動経路を形成し、広域的 な流動形態を支配していることなどを明らかにできた.

第3図 逐次ガウス共シミュレーションによる(a) 亀裂 – 透水データ, (b) 測定データのみを用いての3次元透水係数分布モデルの比較

5. まとめ

本稿での例は限られてはいるが、地質関連の空間モデ リングの精度向上には、主変数の偏在性やデータ不足を 補うため、これと関連する他種データ、および面的に得 られる物理探査データや衛星画像データなどのソフト情 報を補助変数に利用することが必須と考えられる.また、 従来の地球統計学に加えて、主変数と副変数をさらに有 効に組み合わせるための数理モデルの開発も必要である.

文 献

- Ilyas, K., Kashiwaya, K. and Koike, K. (2016) Journal of Geochemical Exploration, vol. 165, pp. 174–188.
- Koike, K., Kubo, T., Liu, C., Masoud, A., Amano, A., Kurihara, A., Matsuoka, T. and Lanyon, B. (2015) *Tectonophysics*, vol. 660, pp. 1–16.
- 久保大樹・小池克明・劉春学・栗原新・松岡稔幸 (2013) 地学 雑誌, vol. 122, no. 1, pp. 139–158.
- Lu, L., Kashiwaya, K. and Koike, K. (2016) *Environmental Earth Sciences* (in press).