反射赤外・熱赤外・後方散乱の衛星データ組み合わせによる 植生域での地熱兆候地検出精度の向上

江崎 俊介*・久保 大樹**・内倉 里沙***・小池 克明**・櫻井 繁樹*

Improvement of Detection Accuracy of Geothermal Manifestations in Vegetation Areas by a Combination of Reflection Infrared, Thermal Infrared, and Backscattering Satellite Data

Shunsuke Esaki*, Taiki Kubo**, Risa Uchikura***, Katsuaki Koike** and Shigeki Sakurai*

* 京都大学大学院総合生存学館総合生存学専攻 Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, 1 Yoshida-Nakaadachi-cho Sakyo-ku, Kyoto 606-8306, Japan. E-mail: esaki.shunsuke.77a@kyoto-u.ac.jp (Esaki)

** 京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2-215, Kyoto 615-8540, Japan.

***DOWA ホールディングス DOWA Holdings Co., 4-14-1 Soto-kanda Chiyoda-ku, Tokyo 101-0021, Japan.

キーワード: リモートセンシング,スペクトル分離法,熱水変質鉱物,植生被覆,地熱資源 **Key words:** Remote sensing, Spectral separation method, Hydrothermally altered mineral, Vegetation cover, Geothermal resource

1. はじめに

環境への負荷が少ない発電方法である地熱発電は、出力 規模や安定性といった面から利用の促進が期待されている. しかしながら、推定される地熱資源量に対し、各国の発電 導入量は低いのが現状である.この導入を妨げる要因とし て、探査コストと開発リスクの高さがあげられる.よって、 地熱資源の探査と開発で不可欠となる地下構造の把握と資 源量の評価を、低コストかつ高精度で行うことが重要とな る.ここに衛星リモートセンシングによる地熱兆候地の広 域探査の高度化が求められる.

反射赤外リモートセンシングを用いた地熱資源探査は、 太陽光の反射を利用して地表物質を同定する.ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) センサは、2~2.5 μ m の短波長赤外 域に 5 つの観測波長域 (バンド)を有し、変質鉱物の特定 やマッピングに有効である.しかしながら、空間分解能は 15 から 30m に限られ、山岳域などの植生に覆われた熱水 変質帯では必然的にスペクトルの混合の問題が生じ、目的 とする変質鉱物を抽出することは難しい.

(E107°40'50" S7°14'52")

第1図 対象地域である Wayang Windu 地区と ASTER 画像

長澤・原 (2007) によれば,混合スペクトルは複数の端 成分の反射スペクトルの線形結合と残差の和で近似できる. ASTER により取得された被植生域の熱水変質帯の観測デ ータを,植生と熱水変質鉱物の混合スペクトルと仮定すれ ば,端成分のスペクトルを分離し,植生域の熱水変質帯を 抽出することが可能となる.

これらの背景を基に、本研究では植生域における熱水変 質帯の抽出技術の開発を目的とし、鉱物指数と地表粗度の 重ね合わせによる地熱兆候地検出法(江崎ほか,2017)を 改良し、検出精度の向上を図った.

2. 対象地域と解析データ

本研究では、バンドン市 (インドネシア・ジャワ島西部) の南方約 35km に位置する Wayang Windu 地熱発電所 (発電設備容量 227MW) を含む南北約 16km,東西約 11km の領域を対象に選んだ. Bogie (2003) によれば、対象地域 では明礬石、イライト、方解石といった熱水変質鉱物の存 在が地表で確認されている. 2003 年 6 月 12 日に取得され、 本地域を含む ASTER 画像に対して大気補正等などの前処 理を行い、全バンドの観測データを用いて植生と熱水変質 鉱物のスペクトル分離を行った. USGS Digital Spectral Library (Clark et al., 2007) からポプラ、明礬石、方解石、 カオリナイトの反射スペクトルデータを参照し、これらを 端成分の反射スペクトルとして用いた.

3. 解析手法

3.1 混合スペクトル分離法

植生と熱水変質鉱物のスペクトルを分離するため、従来 と同様に、これらの線形結合が各画素での反射スペクトル であると仮定した.すなわち、 ρ_v :植生スペクトル、 ρ_s : 鉱物スペクトル,それらの重み係数をそれぞれ x_1 , x_2 とおき,合成スペクトル ρ を

$$\rho = p + p_s \quad (1)$$

で表す.ただし重み係数には式(2)の制約があるため,式(1) より式(3)が導かれる.

$$x_1 + x_2 = 1$$
 (2)

$$\rho \mathbf{x}_1 \left(\rho_v - \rho_s \right) + \rho_s \tag{3}$$

観測された地表面の反射率をρ_{obs},合成スペクトルと観 測スペクトルの残差を f,バンド番号を λ とおくと,f は式 (4),残差の二乗和平方根 E は式(5)で表せる.

$$f = x_1(\rho_v - \rho_s) + \rho_s - \rho_{obs} \tag{4}$$

$$\mathcal{I}(x) = \left(\sum_{\lambda} f_{\lambda}^{2}\right)^{\frac{1}{2}}$$
(5)

このEを最小化する係数 x_1 を最急降下法により求めた.

3.2 正規化処理

スペクトル分離前に,観測スペクトル,端成分の反射ス ペクトルに対して式(6)で表す正規化処理を適用し,特に 反射率の吸収パターンを強調した.

$$R_{i} = \frac{-rm \ i(n)}{m(\alpha)xm \ i(n)} \tag{6}$$

ここで, *R_i*:正規化後の反射率, *r_i*:正規化前の反射率, *i*: バンド番号である.

4. 結果と考察

方解石とポプラの反射スペクトルを端成分として ASTER 画像のスペクトル分離を行った結果を第2図に示 す.対象地域のほぼ全域で x_2 よりも x_1 の値が高く、極めて 高い植生被覆の状況と整合する.しかしながら、方解石の 存在率に対応する x_2 の分布はEの分布と類似しており、こ れはポプラと方解石以外の物質の存在を意味する. x_2 とEのクロスプロットより(第3図)、プロット群は2つの異な るトレンドを有していることがわかり、傾きの大きい集団 は方解石をほとんど含まない領域、逆に小さい集団は比較 的多く含む領域と考えることができる.

この結果を検証するため、現地で熱水変質鉱物の存在が 確認されている噴気帯(Kawah Windu2)を含む 8×8 画素

(120m 四方)の部分に着目した.第4 図(a)の噴気帯の ASTER 画像に示されるように、中央の噴気孔は変質鉱物 から構成されるが、周囲は植生に覆われている.この部分 周辺の x_2 と正規化植生指数 NDVI のクロスプロットを表す 第4 図(b)から、NDVI が高い、つまり植生に覆われている にも関わらず、相対的に大きな x_2 をもつ地点が存在するの が見出される.これを地点 A とし、図中で白抜きの円で強 調した.

正規化を行った後の地点 A の観測スペクトル,および USGS Digital Spectral Library からの引用による植生と 方解石の反射スペクトルを第5図で比較する.地点Aのス ペクトルパターンは,バンド1~3では植生と類似している が,バンド8の反射率がバンド9よりも低下するという特 徴は方解石に調和している.よって,このような地点では 植生の被覆下に方解石が存在する可能性が示唆される.

5. まとめ

最急降下法による混合スペクトル分離法をASTER画像 に適用することにより、画素内に占める植生と熱水変質鉱 物の面積割合を計算し、植生に覆われた熱水変質帯の検出 に有効であることを明らかにできた.複数の変質鉱物に対 応できるように,他の熱水変質鉱物を用いたスペクトル分離を行う予定である.また,これらの結果を江崎ほか (2017)による地表粗度分布,さらに熱赤外バンドデータを 用いた地表温度分布と重ね合わせることで,地熱兆候地検 出精度の向上を実施しているところである.

献

長澤良太・原慶太郎 (2007) 自然環境解析のためのリモー トセンシング・GIS ハンドブック. 古今書院, pp.20-23.

文

- Bogie, I., Kusumah, Y. I., and Wisnandary, M. C. (2008) Overview of the Wayang Windu geothermal field, West Java, Indonesia. *Geothermics*, vol.37, pp.347-365.
- 江崎俊介・久保大樹・内倉里沙・小池克明 (2017) 春季大 会プログラム・要旨集. 資源・素材学会, p.47.
- Clark, R. N., Swayze, G. A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., and Sutley, S. J. (2007) USGS digital spectral library splib06a. *U.S. Geological Survey*, Digital Data Series 231.

第2図 方解石の反射スペクトルを用いたスペクトル分離結果で (a)植生の重み係数x₁,(b)鉱物の重み係数x₂,(c)残差の二乗 和平方根 *E*の分布を表す

第3図 重み係数x2と残差の二乗和平方根 Eのクロスプロット (E107°37'33" S7°12'49")

第4図 (a)KawahWindu2を含む8×8回素の位置(白枠)と
(b)NDVIと方解石の重み係数x,のクロスプロット

第5図 地点Aにおける観測スペクトルと植生・方解石の反射ス ペクトルの比較