機械学習を用いた可視・反射赤外スペクトルの 波長選択による鉱物含有率推定精度の向上

岸本 将英*・久保 大樹*・小池 克明*

Accuracy improvement of mineral composition by wavelength selection from visible-reflected infrared spectrum using machine learning

Masahide Kishimoto*, Taiki Kubo* and Katsuaki Koike*

*京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2-215, Kyoto 615-8540, Japan. E-mail: kishimoto.masahide.75z@st.kyoto-u.ac.jp (Kishimoto)

キーワード: リモートセンシング, スペクトル分解, バンド選択, 機械学習, 特徴量選択 **Key words**: Remote sensing, Spectral unmixing, Band selection, Machine learning, Feature selection

1. はじめに

地球観測衛星を利用したリモートセンシング画像は、金 属鉱床や熱水変質鉱物を広域から検出できるために、兆候 検出として広く利用されている.ハイパースペクトル画像 では観測波長帯(バンド数)が多く、得られる情報量も多いた め、地表物質の識別精度も高いといわれている.しかしなが らこれらのデータには相関性が高く無関係な情報も含まれ ているため、解析において障害となる場合がある.この問題 の解決手法として主成分分析(Principal Component Analysis: PCA)を代表とする特徴量抽出や機械学習で用い られる特徴量選択(バンド選択)といった次元削減が行われ る.リモートセンシング画像解析の一つである地表面鉱物 含有率推定においてバンド選択が行われる例は少なく、よ り詳細な評価が必要である.

また地球観測衛星によって撮影されたリモートセンシン グ画像において、ハイパースペクトル衛星画像が取得され ている領域はマルチスペクトル衛星画像が取得されている 領域と比較してはるかに少ない.バンド選択による地表面 鉱物含有率推定の検証によってマルチスペクトル衛星画像 が取得されている領域規模での高精度解析が期待される.

そこで本研究では、バンド選択による鉱物含有率推定精 度の検証を目的として、スペクトルライブラリーデータの解 析によって得られた選択バンドによってハイパースペクト ル画像解析を行い、鉱物含有率推定結果と実際の鉱物含有 率推定分布図との比較を行った.

2. 測定地域とデータの概要

本研究では、米国ネバダ州中部の Cuprite 地域を対象と した(第1図). Cuprite 地域周辺は、特に乾燥した気候で植 生が疎らな砂漠地帯になっており、金銀銅を含む重要な鉱 物の分布が知られている. Cuprite の表層地層は、カンブリ ア紀から第三紀までの様々な岩石からなり、その中でも明 礬石やカオリナイトが分布する熱水変質帯が広範囲におよ ぶ (Hoang and Koike, 2017). 解析領域は東西 6.99 km,南 北 7.78 km で、明礬石、白雲母、カオリナイト、石灰岩が 主に分布している.本研究ではこの四種類の鉱物を対象とし,バンド選択および地表面鉱物含有率推定の端成分に用いた.

解析には衛星搭載型ハイパースペクトルセンサ Hyperion により撮影された衛星画像を用いた. Hyperion は波長分解 能が高く,356~2577 nm の波長域に242 もの連続するバン ドを有する. 解析で用いたシーンは,2011 年 9 月 19 日に 撮影されており, 雲量は0%である.

本研究ではバンド選択における使用データおよび鉱物含 有率推定における端成分として米国地質調査所(United States Geological Survey: USGS)のスペクトルライブラリ を用いた.USGSのスペクトルライブラリは、広く認知され ているライブラリで実験室において分光光度計によって得 られた天然および人工物質のスペクトルから構成されてい る.同一鉱物について複数の反射スペクトルが収録されて おり、本研究では 400~2500 nm の範囲で幅 1 nm の resample を行い、データとした.端成分として用いる際に は各鉱物の反射スペクトルの平均値を用いた.

3. 解析手法

3.1 スペクトルライブラリからのバンド選択

本研究ではバンド選択手法として連続体除去

第1図 Cuprite 地区の位置(左), Cuprite 地区の一般的な表 面状態と Alunite hill(右)

(Continuum Removal: CR)を施した USGS のスペクトルラ イブラリデータに対し,機械学習で用いられる特徴量選択 手法を応用した.機械学習で用いられる特徴量選択は Filter methods, Wrapper methods, Embedded methods の3 つに 大別される(Chandrashekar and Sahin, 2014).本研究では 機械学習モデルを使用せずにデータセットのみで完結する 手法である Filter methods の一つに着目し,特徴量分布図 から選択波長を決定した(第2図).本研究では選択波長数を 10 と設定した.

3.2 ハイパースペクトル・マルチスペクトル画像解析

大気補正,不良バンド除去およびノイズ除去を含む前処 理を施したスペクトル画像(バンド選択なし:155 バンド,バ ンド選択あり:10 バンド)に対し鉱物含有率推定を行った. 本研究では一般的に鉱物含有率推定手法として用いられる 線形分離(Linear Spectral Unmixing: LSU)のほかに,連続 体除去を前処理として行った後に LSU を行う CR モデル, 自然対数除去に加えて連続体除去を前処理として行った後 に LSU を行う LCR(Log Continuum Removal: Zhao, 2019) モデル,および反射スペクトルが地形や粒径によって乗法 的に変化すると仮定し,その影響を変数として考慮した SCLSU(Scaled Constrained Least Squares Unmixing: Ibarrola-Ulzuru, et al., 2019)を適用した.

4. 含有率推定結果および考察

Hyperion 画像の全データ(155 バンド)を用いた解析では, 地表で確認されているカオリナイトの存在を判別すること ができなかった.一方,特徴量分布を基準にハイパースペク トルデータからバンド選択を行ったマルチスペクトルデー タでは,SCLSU,LCRモデル,CRモデルにおいてカオリ ナイトの含有率を測定することができた.LCRモデルにお ける比較を第4図に示す.LCRモデルでは明礬石,方解石, 白雲母においても含有率推定を行うことが可能であり,こ れらの鉱物が推定された位置は,第3図に示すUSGSの鉱 物分布図(Kruse, et al., 2015)とも整合的であった.以上の 結果からバンド選択により含有率推定精度がバンド選択を 行っていない場合と比較して同等以上であることが示され た.含有率推定精度が向上した原因として,ミクセル内にお ける端成分ではない物質のスペクトル吸収ピークによるス ペクトル分離アルゴリズムへの影響の軽減が考えられる.

5. まとめと今後の課題

本研究ではバンド選択による鉱物含有率推定精度の検証 を目的として、スペクトルライブラリーデータの解析によっ て得られた選択バンドによってハイパースペクトル画像解 析を行った. LCR モデルではバンド選択を行ったことで高 精度な解析を行うことができると考えられる結果となった. 本研究では特徴量分布図からピーク位置に対する波長を選 択したが、バンド幅やバンド数をどのように設定するかに ついては、さらなる検証が必要である.

文 献

- Chandrashekar, G., Sahin, F. (2014) A survey on feature selection methods. *Computers and Electrical Engineering*, vol.40, no.1, pp. 16-28.
- Hoang, N. T., Koike, K. (2017) Transformation of Landsat imagery into pseudo-hyperspectral imagery by a multiple regression-based model with application to metal deposit-related minerals mapping. *ISPRS Journal of Photogrammetry and Remote Sensing*,

vol.133, pp.157-173.

- Ibarrola-Ulzurrun, E., Drumetz, L., Marcello, J., Gonzalo-Martín, C., Chanussot, J. (2019) Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability. *IEEE Transactions on Geoscience and Remote Sensing*, vol. 57, no. 7, pp. 4775– 4788.
- Kruse, F. A., Baugh, W. M., Perry, S. L. (2015) Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. *Journal* of *Applied Remote Sensing*, vol.9, no.1, pp.1-17.
- Zhao, H. (2019) Nonlinear unmixing of minerals based on the log and continuum removal model. *European Journal of Remote Sensing*, vol.52, no. 1, pp.277-293.

第2図 スペクトルライブラリデータから得られた特徴量 分布図と選択バンド

第3図 本研究の解析領域における地表鉱物分布 (Kruse, et al. (2015)より編集)

第4図 LCRモデルによる解析領域におけるカオリナイト の地表面鉱物含有率推定結果:バンド選択なしの 場合(右)とバンド選択ありの場合(左)の比較