斜面傾斜角の経緯度による補正法

井上 誠*

The correction method for the slope angle using the longitude and the latitude.

Makoto INOUE*

*地球情報·技術研究所 Global Info-tec ,1-11-6 Kizaki, Urawa-ku, Saitama City, 330-0042, Japan. E-mail:m_ino_ue@nifty.com

キーワード: DEM, 傾斜角, 地形解析, 経度, 緯度, 補正法 Key words: DEM, slope angle, geomorphic analysis, longitude, latitude, correction method

1. はじめに

について報告する。

最近公開されているリモートセンシング技術で作成され た DEM や国土地理院が公開している基盤地図情報標高モ デルの DEM は、サンプリング間隔が秒で表示されている。 そのため、斜面傾斜角を求める時に使用する東西方向のサ ンプリング距離と南北方向のサンプリング距離とが異なっ てくる。特に高緯度地域ほどその差が大きくなってくる。 サンプリング間隔が緯度により変化するため、傾斜量、 傾斜度、勾配などは分母のサンプリング距離が変わる。こ の問題を解決するために2点間の距離を経緯度から簡易的 に求める方法を利用し、傾斜角に与える影響を調べた結果

2. 経緯度からサンプリング距離を計算する方法

地球は回転楕円体であるため、2 点間の距離は直線的な 距離ではなく、球面三角法によって曲面距離を計算しなけ ればならい。国土地理院測地部では下記のアドレスで2点 間距離を経緯度から求める計算式を公開している。

http://vldb.gsi.go.jp/sokuchi/surveycalc/surveycalc/algorithm/bl2st/bl2st.htm

しかし、式が複雑でプログラムの1部として組み込むに は適さない。比較的精度がよい簡易計算法としてヒュベニ の公式がある。(図-1 参照)その精度を調べるために国土 地理院の2点間距離を求めるホームページの計算結果とヒ ュベニの式の計算結果を比較した。検証データとしては基 盤地図情報数値標高モデル10mDEMの屋久島近傍を使用 した。

north: 30.5, south: 30.166666668

east: 130.75, west: 130.375

rows: 3000, cols: 3375

図・2 に示すように計算誤差は東西方向で 20cm 以下、南 北方向で数 cm の誤差であった。この辺の距離をデータ数 で割ればサンプリング距離の誤差は 1mm 以下になること が確認できた。

DEM のサンプリング距離は、計算範囲を囲む 4 辺の距離を計算し、計算範囲の中心点での距離を東西方向 (dx)、南北方向 (dy) として下式で計算した。

dx=((北側辺の距離+南側辺の距離)/2)/(東西方向のデ ータ数-1)

dy=((東側辺の距離+西側辺の距離)/2)/(南北方向のデ

ヒュベニイの平均経度の式

 $s = \sqrt{(M\Delta\phi)^2 + (N\cos\phi\Delta\lambda)^2}$ $\phi: 2 点の平均線度$ $\Delta\phi: 2 点の稗度差$ $\Delta\lambda: 2 点の経度差$ $M: 子午線曲率半径 \frac{a(1-e^2)}{\sqrt{(1-e^2\sin^2\phi)^3}}$ $N: 卯酉線曲率半径 \frac{a}{\sqrt{1-e^2\sin^2\phi}}$ a: 回転楕円体の長半径 b: 回転楕円体の短半径 $e: 離心率\sqrt{1-(b/a)^2}$

図-1 ヒュベニの平均緯度の式(三浦 2015 より)

	国土地理院計算結果	とユベニ公式の計算結果	計算誤差
北側辺の距離	35,999.581 m	35,999 598	17cm
南側辺の距離	36,121.725 m	36,121.741	16cm
東側辺の距離	36,962.694 m	36,952.693	-1cm
西側辺の距離	36,952.694m	36,952.693	-1cm

図-2 国土地林の計算結果とヒュベニの式の計算結果の 比較

ータ数-1)

下記に Microsoft 社 Visual BASIC V6 のプログラムリストを示す。

このプログラムの IDO1, IDO2, KEI1, KEI2 に 2 地点の経 緯度を入れて 4 辺の球面距離を計算して中心点でのサンプ リング距離 dx, dy を求める。変数はすべて倍精度を使用す る。

'2 点間の距離 ヒュベニの公式

Dim ido1 As Double '緯度1

日本情報地質学会シンポジウム 2016 講演論文集, 18-21, 2016 i-Const./CIM 時代の地形・地質三次元モデリング

Dim ido2 As Double '緯度 2 Dim kei1 As Double '経度1 Dim kei2 As Double '経度 2 Dim D As Double '2 点間の距離 Dim PAs Double '2 点の平均緯度 Dim dPAs Double '2 点の緯度差 Dim dR As Double '2 点の経度差 Dim M As Double '子午線曲率半径 Dim NAs Double '卯西線曲率半径 Dim pi As Double ' π Dim yn_D As Double Dim ys_D As Double Dim xe_D As Double Dim xw_D As Double Dim aa As Double Dim bb As Double Dim ee As Double Dim ww As Double pi = 3.14159265358979 / 180 aa = 6378137 '長半径 bb = 6356752.314245 '短半径 $ee = Sqr((aa ^ 2 - bb ^ 2) / aa ^ 2)$ '第1離心率 '北側の辺の長さ ido1 = vn * piido2 = yn * pikei1 = xe * pikei2 = xw * piP = (ido1 + ido2) / 2dP = ido1 - ido2dR = kei1 - kei2 If dP = 0 Then dP = 0.0000001 $ww = Sqr(1 - ee \land 2 * Sin(P) * Sin(P))$ $M = aa * (1 - ee ^ 2) / ww ^ 3$ N = aa / ww $yn_D = Sqr((M * dP) * (M * dP) + (N * Cos(P) * dR) * (N * Cos(P) * dR))$ Cos(P) * dR)'単位は m Hu H12 H13 N 3. 誤差の検証 0 0 0 H22 H23 第1表は、国内の島を対象に H21 してサンプリング距離を 10m H31 H32 H33 s に固定した場合と経緯度でサン **→**0 04 0 dx プリング距離を補正した場合と W 4 - E の差を示す。対象とした地形要 素は、傾斜量、傾斜度、勾配で 図-3 データ配置図 ある。 図・3に示すデータ配置の場合の計算式を示す。傾斜量と 傾斜度は Prewitt 法を用いて下記に示す式で計算した。 Prewitt 法

 $S_x = (H_{11} + H_{21} + H_{31}) - (H_{13} + H_{23} + H_{33})/6dx$ $S_y = (H_{11} + H_{12} + H_{13}) - (H_{31} + H_{32} + H_{33})/6dy$ 傾斜量

$$S = \sqrt{\sqrt{{S_x}^2 + {S_y}^2}}$$

傾斜度

kaku = Atn(Sqr(sx * sx + sy * sy))/deg但し、deg = 3.14159 / 180

佐渡島						
				ヨ ★の 亚比は		dy
項日	10mで固定 緯度・経度で補正 差			設差の半均値	dx	
傾斜量	2.08594	2.03517	0.05078	0.00549		
傾斜度	77.05689	76.42666	0.63023	0.31535	9.750	12.335
勾配	79.86121	B6121 78.69179 1.16942 0.45610		0.45610		
伊豆大鳥						
<u> </u>		最大傾斜角(度)				
項目	10mで固定	緯度・経度で補正	誤差の半均値	dx	dy	
傾斜量	2 02677	1 991 99	0.03478	0.00379		
傾斜度	76.31817	75.85519	0.46298	0.19294	10.178	12.334
勾配	78.02879	76.41856	1.61023	0.30122		
隱岐諸鳥						
		最大傾斜角(度)	5		10	dy
項目	10mで固定	緯度・経度で補正	差	誤差の半均値	dx	
傾斜量	3.09439	3.05064	0.04375	0.00280		
傾斜度	84.03794	83.86701	0.17093	0.16551	9.999	12.332
勾配	85.04726	84.53702	0.51024	0.24851		
屋久島						
	8	最大傾斜角(度)			C	dy
坦 日	10mで固定	緯度・経度で補正	差	設差の半均値	dx	
傾斜量	2.66226	2.53050	0.13176	0.01823		
傾斜度	81.96915	81.12407	0.84508	1.09133	10.688	12.322
勾配	83.30586	82.18010	1.12576	1.20324		
西表島						
項目		最大傾斜角(度)	調美の平均値	dv	du	
	10mで固定	緯度・経度で補正	差	欧在ツージ世	ux.	uy
傾斜量	2.02335	1.92673	0.09662	0.01145		
傾斜度	76.27359	74.92390	1.34969	0.66253	11.276	12.313
勾配	78.01582	76.15573	1.86009	0.79110		

表-1 サンプリング距離を 10m に固定した場合と経 度

を・消	緯度で補止	した場合の各地点、	での誤差

奥尻島(勾配)			佐渡島(勾配)				隠岐諸島(勾配)		
角度区分	10mで固定	経緯度補正	角度区分	10mで固定	経緯度補正	角度区分	10mで固定	経緯度補正	
0-2	39,190	47,356	0-2	548,456	604,589	0-2	80,128	92,231	
2-5	137,580	144,039	2-5	591,287	606,176	2-5	119,618	128,763	
5-10	250,155	267,020	5-10	677,658	731,973	5-10	210,860	239,896	
10-20	368,939	378,316	10-20	1,367,929	1,514,932	10-20	526,448	603,220	
20-30	248,773	248,582	20-30	1,542,693	1,669,730	20-30	674,630	755,446	
30-40	158,972	143,380	30-40	1,477,631	1,428,203	30-40	727,448	712,383	
40-50	57.890	36.464	40-50	728.295	440.430	40-50	411.813	260.701	
50-60	6,260	2,729	50-60	88,059	27,723	50-60	66,155	28,220	
60-70	445	331	60-70	3,372	1,764	60-70	11,040	8,735	
70-80	50	37	70-80	326	186	70-80	5,334	4,043	
80-90	808	556	80-90	839	568	80-90	486	309	
	伊豆大島(勾配)		屋久島(勾配)				西表島(勾配)		
角度区分	10mで固定	経緯度補正	角度区分	10mで固定	経緯度補正	角度区分	10mで固定	経緯度補正	
0-2	39,270	49,392	0-2	29,502	38,892	0-2	125,881	148,638	
2-5	125,020	138,472	2-5	109,990	135,332	2-5	165,305	178,003	
5-10	164,025	172,600	5-10	253,968	294,516	5-10	194,515	232,480	
10-20	202,535	201,444	10-20	516,186	618,043	10-20	512,628	630,789	
20-30	111,563	102,675	20-30	790,345	1,006,727	20-30	576,475	583,190	
30-40	54,493	40,216	30-40	790,345	1,170,121	30-40	406,107	310,329	
40-50	16,597	10,748	40-50	834,112	520,488	40-50	163,645	82,858	
50-60	5,189	3,675	50-60	174,952	58,036	50-60	31,202	11,753	
60-70	1,650	1,275	60-70	9,471	3,773	60-70	3,577	1,471	
70-80	289	134	70-80	289	663	70-80	275	99	
		100							

表-2 勾配の頻度分布

勾配

 $fx = (h_{21} - h_{11}) / (2 * dx)$

 $fy = (h_{12} - h_{11}) / (2 * dy)$

ta = Sqr(fx * fx + fy * fy)/dleg

表・1 に示す通り、南北方向の dy の値はほとんど変わら ないが、東西方向の dx は緯度による円周距離が高緯度に なるにつれて小さくなっている。傾斜角については最大傾 斜角について調べた。利尻島の傾斜量と傾斜度を除いて、 経緯度でサンプリング距離を補正した傾斜角が 10m に固 定して計算した平均角度より多少大きい。また、範囲内の すべてのデータについて差を求め、その平均値で評価した。 表・2 の勾配角度の頻度分布で見ると経緯度補正した結果 では全体的に低角度での頻度が増し、高角度で減少してい ることがわかる。このことから、経緯度補正を行うと角度 が小さくなることがわかる。

図-4、図-5に傾斜度図、図-6、図-7に傾斜量図、図-8、 図-9に勾配図のイメージ図を示す。それぞれの図は、左側 が経緯度補正をしたイメージ図であり、右側がサンプリン

日本情報地質学会シンポジウム 2016 講演論文集, 18-21, 2016 i-Const./CIM 時代の地形・地質三次元モデリング

図-4 経度・緯度補正した傾斜度図(ポジ画像) 基盤地図情報数値標高モデル10mDEMを使用

図-6 経度・緯度補正した傾斜量図(ポジ画像) 基盤地図情報数値標高モデル 10mDEM を使用

図-8 経度・緯度補正した勾配図(ポジ画像) 基盤地図情報数値標高モデル 10mDEM を使用

図-5 経度・緯度なしの傾斜度図(ポジ画像) 基盤地図情報数値標高モデル 10mDEM を使用

図-7 経度・緯度補正なしの傾斜量図(ポジ画像) 基盤地図情報数値標高モデル 10mDEM を使用

図-9 経度・緯度補止なしの勾配図(ホン画像) 基盤地図情報数値標高モデル 10mDEM を使用

日本情報地質学会シンポジウム 2016 講演論文集, 18-21, 2016 i-Const./CIM 時代の地形・地質三次元モデリング

グ距離を 10m に固定して計算したイメージ図である。左 右を比較すると多少色の明暗を感じることはできるが、地 形構造上には全く変化は見られない。見易さの点では、傾 斜量図、傾斜度図、勾配図では差があるが、これは計算式 による影響であり、左右の図では大きな変化はない。表-1 及び表-2 に示した数値では確かに差があるが、この程度の 差ではイメージ画像で表現するとその違いは肉眼ではほと んど判別できない。しかし、拡大して注意深く見ると濃淡 に少しの差がみられる。屋久島中央部の暗部に注目して見 るとその差を確認できる。地形区分をするときには、平野 部から少し緩傾斜ところでは地形区分に影響が出るが、イ メージ画像で取り扱う限り実用的には問題ないものと考え る。

4. 地形形状の表現

経緯度による影響は、サンプリング距離による斜面勾配 のイメージ図への影響はあまり大きくないことがわかった。 しかし、イメージ画像における地形形状は座標系の違いに よる投影方法に依存していることがわかった。

図-10 は計算結果の画素を縦横比 1:1 で表示した傾斜度 のイメージ画像(ポジ画像)である。このイメージ図を右 上の UTM 座標系のイメージ図と比較すると屋久島の形状 が東西に幅広くなっていることがわかる。図-11 は利尻島 の傾斜度図である。上の図が UTM 座標系、下が画素の縦 横比 1:1 の図である。縦横比 1:1 の図では東西に広がった 形状になっている。島の形状上は表示する座標系に大きく 関係しており、地質図などの他の画像と対比する場合には 座標系をそろえる必要がある。

5.まとめ

 地球が回転楕円体であることから高緯度へ行くに従い、 同じ秒数であっても東西方向(dx)と南北方向(dy)の距 離が大きく異なる。このため、0.4 秒を dx=dy=10m と固 定して傾斜角を求める時には注意が必要である。

2) 経緯度の補正にはヒュベニの公式を使用すると簡便に 計算できる。計算誤差は、国土地理院ホームページで公開 されている 2 点間距離の計算結果と比較して東西方向で 35km あたり 16-17 cm、南北方向は数 cm であり、dx, dy で考えた場合には誤差はほとんどない。十分使用できる計 算式であることがわかった。

3) 経緯度補正を行った結果と補正を行わない計算結果を 頻度分布で見ると、経緯度補正を行うと低角度の頻度は増 し、興亜角度の頻度が低下している。補正を行うと傾斜角 が小さくなる傾向があることがわかった。

4) 島の形状の差は、表示する座標系に大きく依存している ことがわかった。他の画像と比較する場合は比較する画像 の座標系に合わせる必要がある。

6. 参考文献

三浦英俊(2015)緯度経度を用いた 3 つの距離計算方法,

オペレーション・リサーチ,2015 年 12 月号, pp701-705 野上道夫(1999): 50m-DEM による地形計測値と地質の関

係,地理学評論,72A-1,pp.23-29

神谷泉・黒木貴一・早田靖博・小田切聡子・政春尋志・田 中耕平(1999):傾斜量図の作成とその応用,情報地質,

Vol.10, No.2, pp.76-79

井上誠(2009) DEM から地質情報を得るための検討-その 1 傾斜量図-,情報地質, Vol.20, No.2, pp114-115 井上誠(2010) DEM から地質情報を得るための検討-その

図-10 計算結果の画素をそのまま表示した傾斜度図 基盤地図情報数値標高モデル 10mDEM を使用

図-11 利尻島の傾斜度イメージ図
上:UTM座標系、下:画素の縦横比1:1
基盤地図情報数値標高モデル 10mDEM を使用
2 傾斜量図と地質情報の関係-,情報地質, Vol.21, No.2, pp78-79