植生リモートセンシングを用いたカルデラ地形における地熱構造の推定

宫崎翔*·福田直也*·久保大樹*·小池克明*

Estimation of Geothermal structure Using Vegetation Remote sensing in a Caldera topography

Kakeru Miyazaki*, Naoya Hukuta*, Taiki Kubo* and Katsuaki Koike*

*京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2, Kyoto 615-8540, Japan. Email: miyazaki.kakeru.77x@st.kyoto-u.ac.jp

キーワード: ハイパースペクトル画像, 植生指数, 地熱資源探査, HISUI **Key words:** hyperspectral image, vegetation index, geothermal exploration, HISUI

1. はじめに

日本の地熱資源量は2,347万kWと世界第3位の地熱ポ テンシャルを持ち,再生可能エネルギーとしての活用が期 待されている.しかし,地熱発電設備容量は2022年4月時 点で51万kWと世界第10位にとどまっている(経済産業省, 2022).地熱資源の利用が進んでいない一因として,調査・ 開発コストの高さがあげられる.その改善策として低コス トかつ広域的な解析が可能な衛星リモートセンシングの活 用が考えられる.しかしながら,日本の地熱地域の多くは植 生に覆われており,衛星画像によって直接的に地表物性を 解析することは困難である.

そこで本研究では、断層をパスとして上昇したガスや、地 温・土壌の変質が植生に及ぼす影響に着目し、植生異常から 地下に潜在する熱源の位置と広がりを推定することを試み た.特に国内において地熱開発有望地となるカルデラ域に 注目した.陥没型カルデラはその構造から中心部は堆積層 に覆われて地熱兆候が少ないが、外縁部には断層が地表近 くまで到達し、地熱兆候が現れている、という不均質な構造 を示すことが想定される.植生リモートセンシングを用い てその不均質な地熱構造を捉える手法について検討した. また、植生の種類の違いや地形が本手法の有効性に及ぼす 影響についても検討した.

2. 解析対象地域

本研究では秋田県湯沢市を解析対象に選んだ(第1図). 本地域は三途川カルデラと呼ばれる南北20km,東西10km

第1図 秋田県湯沢市南部と HISUI データの解析範囲

に及ぶ大規模な陥没型カルデラに位置しており,複数の地 熱発電所が稼働しているという活発な地熱地域である.特 に解析範囲南部に位置する上の岱・下の岱地域周辺の地熱 域に注目した.南側に位置する上の岱地域では,多数の噴気 帯や温泉が存在し,上の岱発電所が稼働するなど活発な地 熱活動が確認されている.一方,北側の下の岱地域では,地 表に明瞭な地熱兆候がほとんど見られないという不均質な 地熱構造となっている.

3. 解析手法

3.1 植生指数

衛星画像として、ISSの日本実験棟「きぼう」に搭載され ているハイパースペクトルセンサ HISUI (Hyperspectral Image SUIte)の画像を用いた. HISUI データに,放射校 正・大気補正・不良バンド除去・ノイズ除去・植生域抽出な どの前処理を行った後に,植生ストレスの大小を評価する 植生指数である VIBS (Vegetation Index considering Blue shift and Shortwave infrared: Kubo et al., 2025)を適用し た. VIBS は式(1)によって求められる. ここで ρ_x は x nm の波長における反射率, m_i は *i* 番目の項のバンド比の平均 で σ_i はその標準偏差を表す. $\Delta \rho_x$ は x nm の前後 2 バンド の波長を用いて一次微分を求めたものである.

$$\left(\frac{\rho_{2274} - \rho_{675}}{\rho_{2274} + \rho_{675}} - m_1 \right) / \sigma_1 + \left(\frac{\Delta \rho_{707} - \Delta \rho_{737}}{\Delta \rho_{707} + \Delta \rho_{737}} - m_2 \right) / \sigma_2$$
 (1)

植物は水分の欠乏により短波長赤外域(SWIR)全体で反 射率が増加する(Yu et al., 2000). VIBS の第1項はSWIR の長波長側のピークにおける反射率の強調を目的とする. 波長 2274 nm は水分子による電磁波吸収に敏感なバンドで ある.($\Delta p_{707} \Delta p_{737}$)/($\Delta p_{707} + \Delta p_{737}$)の部分はブルーシフトと呼 ばれる現象を強調する.ブルーシフトとは,植生がストレス を受けた際に生じる変化で,レッドエッジと呼ばれる 720nm 付近の反射率の急激な増加が短波長側,つまりブル ー側へ移動する現象であり,クロロフィルの減少などが原 因とされている(Rock et al., 1988).

3.2 VIBS の解析対象地域への適用性

VIBS はインドネシアの地熱地域を対象として実験的に

第2図 (a)VIBS 値の分布と産総研地質 Navi による断層の重ね合わせ,および(b)VIBS 値の上位5%分布(赤)とカ ルデラとの位置関係

求められた指標である.日本で適用する場合,その他の要因 が VIBS の値に影響を与える可能性がある. そのため, イン ドネシアと異なる植生、および解析対象が山岳域であるこ とを考慮し,異なる植生(ブナ,ミズナラ,スギ・ヒノキ) の分布域ごとの VIBS 値を集計した結果,有意な差はみら れなかった.次にHISUI 付属のDEM データに基づく標高 や傾斜方位・傾斜量と VIBS 値にも有意な相関はなかった. よって、本地域における VIBS 分布は、植生の種類や地形に はよらず、地熱システムを反映するものと考えられる.

4. VIBS の適用結果および考察

VIBS 適用結果と産総研地質図 Navi による断層分布と の重ね合わせを第2図(a)に示すが、断層とVIBS値の高い 部分が整合的であることがわかる.これより断層をパスと して地下深部から地熱流体が上昇し, 地表の植生に熱的・化 学的なストレスを及ぼしていることが示唆される. 第 2 図 (b)では VIBS 値の上位 5%と特に高い部分に該当する高ス トレス域を強調し、カルデラ地形との位置関係を示す. VIBS 値の高い部分は院内カルデラと三途川カルデラの外 縁部に広く分布する傾向が見られた. これはカルデラ地形 での地熱兆候は外縁部に限られるという上記の特徴に合致 する結果である.

本研究で特に注目する上の岱・下の岱地域付近の VIBS 値 分布を第3図に示す.黒色の領域は非植生域として除外し た箇所である. 泥湯断層を境として VIBS 値の低い北東部 と高い南西部に区分されるという明瞭なコントラストが現 れている.この要因として、断層と下の岱地域付近の湖底堆 積層である三途川層の存在が考えられる.本地域の深部に

第3図 上の岱・下の岱地域の VIBS 値の分布

は MT 比抵抗構造から熱源の存在が推定されており(Ishizu et al., 2021),付近の断層をパスとし地表まで地熱流体が上 昇している可能性がある. すなわち, 第3 図南西部には断 層が地表近くまで連続し、それらを流動パスとする地熱流 体が地表の植生にストレスを及ぼすことで高い VIBS 値と なったと考えられる. これに対して北東部は透水性の低い 三途川層に覆われているため、地熱流体が地表近くまで上 昇できず、低植生ストレスの低い VIBS 値となる.

以上により、植生指数 VIBS を用いた植生リモートセン シングによって、植生の種類や地形特徴の違いによる影響 を軽減させながら、カルデラ特有の不均質な地熱構造を把 握できる可能性が示された.

文 献

- Rock, B. N., Hoshizaki, T., and Miller, J. R. (1988) Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment. 24(1), 109-127.
- Ishizu, K., Ogawa, Y., Nunohara, K. et al., (2022) Estimation of spatial distribution and fluid fraction of a potential supercritical geothermal reservoir by magnetotelluric data: A case study from Yuzawa Geothermal Field, NE Japan. Journal of Geophysical Research: Solid Earth., 127(2), e2021JB022911.

経済産業省:地熱資源開発の現状について

https://www.meti.go.jp/shingikai/enecho/shigen_nenryo /pdf/022_04_00.pdf (accessed 2025-05-29)

産総研地質図 Navi

https://gbank.gsj.jp/geonavi/geonavi.php (accessed 2025-01-26

- Kubo, T., Gonnokami, H., Hede, A. N. H. and Koike, K. (2025) Combining vegetation index with mineral identification for detection of high-geothermalpotential zones using hyperspectral satellite data. Geothermics, 125, 103194
- Yu, G. R., Miwa, T., Nakayama, K., Matsuoka, N. and Kon, H. (2000) A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties. Plant Soil, 227, 47-58.